財團法人罕見疾病基金會 112 年度委託研究計畫 成果報告書

計畫名稱(中): McCune Albright syndrome (MAS)基因治療之臨床前研究

計畫名稱(英): <u>A preclinical study for gene therapy of McCune Albright</u>
<u>syndrome (MAS)</u>

研究起訖: (112年8月4日) 至 (113年8月3日)

申請機構:國立台灣大學醫學院附設醫院基因醫學部

主 持 人: 簡穎秀主任

一、計畫中文摘要:

建立一個針對全身型 McCune Albright syndrome (MAS)的基因治療

McCune Albright syndrome (MAS)患者由於 20q13.2 位置上 GNAS1 基因發生 突變,使得 Gsa 蛋白的功能異常,持續活化 adenylyl cyclase,刺激 cAMP 之 訊息傳遞途徑。患者會產生骨纖維性發育不良及內分泌系統的功能亢進等症狀。此症十分的罕見,但是更少見的是 MAS 以全身性表現。患者全身的骨骼都產生病變,患者的腎臟無法回收磷,低血磷及低血鈣更加重了骨骼的病變。這樣的病人長期生活在骨骼病變中,生活品質低落,壽命也會減短。

藉由本計畫,我們希望能找到一條合適的 siRNA,來抑制 MAS 患者體內突變型 GNAS1 之表現,減低 Gsa 活性,讓 MSC 能正常地分化成 osteoblast,就可以建立全身型 MAS 的治療。在這一個臨床前研究中,我們將利用患者的血球,將其轉化成 iPSC,再將 iPSC 分化成為 MSC 及 osteoblast。 我們並將在培養的細胞株中設計並證實具有突變 mRNA 特異性的 siRNA (GNAS1m siRNA)。最後用 lipid nanoparticle 包裹 GNAS1m siRNA,來證明其對患者 MSC 分化成 osteoblast 的效果。我們並將證明其在正常小鼠之安全性。我們希望這項研究能夠促成一項「n of 1」的臨床試驗及治療。

二、研究進度報告:

Aim 1. 建立 MAS iPSC 細胞株

已採取 MAS 病患 16 c.c.血液至 CPT (含 sodium citrate)採血管後,送至中研院 iPSC 產製核心設施進行 iPSC 細胞株的建立。病患之 PBMC 經分離後進行 reprogramming。因 GNAS 突變為鑲嵌型變異,僅 20~30%的細胞中具有此突變,所以 iPSC 經繼代培養至 P5 時需進行 GNAS 基因型鑑定。我們挑選生長優良的 10 個 clones 萃取基因組 DNA,以 PCR 放大含變異點位之 GNAS 基因片段後用 Sanger 定序,挑選其中的 3 株突變型 GNAS 和 3 株野生型 GNAS 做為後續的實驗組與控制組。

Aim 2. 選取具有突變 mRNA 特異性的 siRNA (GNAS1^m siRNA)

Step 2-1. GNAS 基因之選殖與載體構築

GNAS cDNA 載體購於 Origene, GNAS 基因接入 pcDNA3.1 載體中,再經由 PCR-directed mutagenesis 方式獲得 c.602G>A 之突變型 GNAS。

Step 2-2.建立表現外源性 GNAS 之細胞株

野生型與突變型 GNAS 的表現載體轉染至細胞株中,使用抗藥性篩選,所得之抗藥性細胞即為穩定表現外源性 GNAS (野生型或突變型) 之細胞株。

Step 2-3. 設計 GNAS siRNA

利用 Software 設計 GNAS siRNA。

Step 2-4. 測試 GNAS siRNA 效果

包含 negative control 一共四條 siRNA,分別轉染至細胞株,以 reverse transcription/real-time PCR 方法測試細胞內剩餘 GNAS mRNA 的數量。 siRNA 在細胞中用 25nM 及 100nM 兩個濃度測試。siRNA knockdown 效果以 real-time PCR 分析。結果顯示在兩個細胞株中 siRNA-1 及 siRNA-2 效果較佳,可以此兩條 siRNA 進行後續實驗。

Aim 3. 將 MAS iPSC 細胞分化為 MSC 以及 osteoblast

Step 3-1. 將 iPSC 分化為 MSC

在取得 MAS 患者之 iPSC 前,我們先使用健康捐贈者的 iPSC 當做控制組進行 MSC 的分化。在分化後取細胞進行免疫表現型分析,測定 MSC 的表

面標記。

Step 3-2. MSC 分化為 osteoblast

MSC 的一項重要特徵為可再分化成 osteoblasts 'adipocytes' 和 chondroblasts 等三種類型的細胞。要分化成 osteoblasts 只需將 MSC 的培養基更換成分化培養基,培養後即形成 osteoblasts。可使用 ALP (鹼性磷酸酶)活性分析,和 Alizarin Red S 染色分析成骨細胞產生的橘紅色鈣沉積。

Step 3-3. MSC 之 IL-6 分析

Interleukin-6 (IL-6) 是一個可以抑制骨質生成並且促進骨質吸收的細胞激素,IL-6 會降低 osteoblast 的分化同時使 osteoclast 的分化增加。有報告指出在 MAS 患者的 fibrotic lesions 中 IL-6 的表現量會增加,因為 MAS 患者的 GNAS 基因變異而使得 GNAS 蛋白質的活性異常增加,經由 cAMP 訊息途徑進而刺激 IL-6 的表現量。因此 IL-6 表現量可以成為抑制 GNAS 活性的指標。我們分化成的 osteoblasts,進行 IL-6 的 mRNA 與 protein 分析,結果顯示患者的 IL-6 高於 control。

Aim 4. 測試 GNAS shRNA 和 siRNA 之效果

Step 4-1. GNAS shRNA lentiviral vector 轉染至 iPSC 細胞株

GNAS 和控制組 lentiviral vectors 購自於中研院,轉染 iPSC後,因為載體帶有抗藥基因,可以用藥物進行篩選,所得之抗藥性細胞即為穩定表現 shRNA之 iPSC 細胞株。進一步以 Q-PCR 分析這些細胞株中 GNAS mRNA level 結果如下,相較於控制組,實驗組有明顯的抑制。這些細胞株將來會繼續分化成 MSC,再分析 GNAS 被抑制後對 IL-6表現量與 osteoblast 分化的影響。

Step 4-2. GNAS siRNA 轉染至 MAS MSC 細胞株與 RNA 表現量分析

GNAS siRNA-1 和 siRNA control 轉染至 MSC 中,培養後進行 RNA 萃取並以 Q-PCR 分析 GNAS 和 IL-6 mRNA levels,培養過轉染細胞的 medium 以 ELISA 分析其中 IL-6 protein level。結果顯示示,siGNAS 可以有效的抑制 MSC 中的 GNAS mRNA,進而使其 IL-6 mRNA 和 protein 明顯的下降。以上的結果顯示 siGNAS 對 MAS 疾病的治療極具有潛力,值得進一步研究。

Aim 5. 分離小鼠骨髓中 MSC 細胞

為了試驗 GNAS siRNA 在生物體內的效果, LNP 包裹的 siRNA 將會以尾靜脈注射的方式打入小鼠。我們取股骨和脛骨以分離骨髓中的 MSC, 初步建立

MSC 分離與培養的方法,將來可使用在分析施打 LNP-siRNA 小鼠的 MSC 分析。

三、結果與討論:

實驗細胞株的建立

我們建立了穩定表現外源性野生型和突變型 GNAS 的細胞株,real-time PCR 的結果顯示 GNAS mRNA levels 約 2 倍高於原始的細胞株,需注意到原始的細胞株亦有內源性 GNAS,在評估 siRNA knockdown 效率時會產生比較高的 背景值。在挑選到合適的 siRNA 之後,我們將其轉染到 iPSC 分化成的 MSC 中,結果顯示出 GNAS siRNA 可顯著降低 IL-6。將來會進一步評估 MSC 分化成 osteoblast 的能力是否因 GNAS 的抑制而增加。我們預期 MAS 患者的 MSC 中因 GNAS 過度活化,而使其 osteoblast 的生成受到抑制;在經由 GNAS siRNA 的抑制之後,能有較多的 osteoblast 生成,進而改善患者的症狀。

GNAS siRNA 的設計

在實驗中設計了多條 siRNA,但是由 real-time PCR 的結果顯示 siRNA 對野生型和突變型 GNAS mRNA 都有 knockdown 效果,這個現象可能和 RNA interference 作用機制有關,對一個 nucleotide mismatch 的情形 RNA interference 仍然可以進行作用。

MSC 的分化

MSC 可由胎兒組織、骨髓、牙髓、脂肪組織中分離而得,亦可由 iPSC 分化而來。由 iPSC 分化而來的 MSC 具有標準化來源及非侵入性取得等優點。 MSC 能夠再分化成胚胎時期中胚層的各種組織細胞,如脂肪細胞、成骨細胞及軟骨細胞,進而形成脂肪、硬骨、及軟骨等。MSC 的細胞表面具有 CD73、CD90 及 CD105 的表面標記,但不會表現 CD11b、CD14、CD34、CD45 及 HLA-DR 等的造血幹細胞表面標記。我們的實驗結果顯示,分化的細胞表面具有 CD73 和 CD105 表面標記,其表現幅度隨著分化的時間而增加。MSC 會分泌 IL-6,其與免疫調節和骨質生成/吸收有關。在我們的實驗中可以看到 GNAS 突變型的 MSC 相較於 GNAS 野生型的 MSC 有較高的 IL-6,因此較不利於 osteoblast 的分化。藉由 siRNA 的抑制,GNAS 的表現幅度明顯下降,進而 IL-6 的表現幅度也下降,將有助於 osteoblast 的分化,並且對 MAS 疾病的治療提供一個極具潛力的選擇。